GATE Syllabus

GATE 2022 syllabus – ST: Statistics

GATE 2022 syllabus for Statistics (ST) gives you details of the latest GATE syllabus for the subject release by the official gate organizing institute IIT Kharagpur for the year 2022. We also created an easy to use ad-free mobile app for GATE syllabus, previous year papers with keys, gate calculator, virtual calculator, and more. Download iStudy App for all GATE preparation needs.

You will also find IIT GATE college predictor, NIT GATE college predictor, GATE score calculator and GATE Exam Info & Stats useful during GATE preparation. Without further due let’s jump into the GATE syllabus for Statistics.

GATE 2022 Syllabus – Statistics (ST)

Calculus

Finite, countable and uncountable sets; Real number system as a complete ordered field, Archimedean property; Sequences of real numbers, convergence of sequences, bounded sequences, monotonic sequences, Cauchy criterion for convergence; Series of real numbers, convergence, tests of convergence, alternating series, absolute and conditional convergence; Power series and radius of convergence; Functions of a real variable: Limit, continuity, monotone functions, uniform continuity, differentiability, Rolle’s theorem, mean value theorems, Taylor’s theorem, L’ Hospital rules, maxima and minima, Riemann integration and its properties, improper integrals; Functions of several real variables: Limit, continuity, partial derivatives, directional derivatives, gradient, Taylor’s theorem, total derivative, maxima and minima, saddle point, method of Lagrange multipliers, double and triple integrals and their applications.

Matrix Theory

Subspaces of Rn and Cn, span, linear independence, basis and dimension, row space and column space of a matrix, rank and nullity, row reduced echelon form, trace and determinant, inverse of a matrix, systems of linear equations; Inner products in Rn and Cn, Gram-Schmidt orthonormalization; Eigenvalues and eigenvectors, characteristic polynomial, Cayley-Hamilton theorem, symmetric, skew-symmetric, Hermitian, skew-Hermitian, orthogonal, unitary matrices and their eigenvalues, change of basis matrix, equivalence and similarity, diagonalizability, positive definite and positive semi-definite matrices and their properties, quadratic forms, singular value decomposition.

If you are preparing for GATE, download iStudy Mobile App for all GATE Syllabus, Previous Question Papers and Keys, preparation guide, Exam updates, Gate Virtual calculator, Gate Score calculator, and IITs & NITs cutoffs. It is a lightweight, easy to use, no images, and no ads platform to make students’ lives easier.
Get it on Google Play.

Probability

Axiomatic definition of probability, properties of probability function, conditional probability, Bayes’ theorem, independence of events; Random variables and their distributions, distribution function, probability mass function, probability density function and their properties, expectation, moments and moment generating function, quantiles, distribution of functions of a random variable, Chebyshev, Markov and Jensen inequalities.

Standard discrete and continuous univariate distributions

Bernoulli, binomial, geometric, negative binomial, hypergeometric, discrete uniform, Poisson, continuous uniform, exponential, gamma, beta, Weibull, normal.

Jointly distributed random variables and their distribution functions, probability mass function, probability density function and their properties, marginal and conditional distributions, conditional expectation and moments, product moments, simple correlation coefficient, joint moment generating function, independence of random variables, functions of random vector and their distributions, distributions of order statistics, joint and marginal distributions of order statistics, multinomial distribution, bivariate normal distribution, sampling distributions, central, chi-square, central t, and central F distributions. Convergence in distribution, convergence in probability, convergence almost surely, convergence in r-th mean and their inter-relations, Slutsky’s lemma, Borel-Cantelli lemma, weak and strong laws of large numbers, central limit theorem for i.i.d. random variables, delta method.

Stochastic Processes

Markov chains with finite and countable state space, classification of states, limiting behaviour of n-step transition probabilities, stationary distribution, Poisson process, birth-and-death process, pure-birth process, pure-death process, Brownian motion and its basic properties.

Estimation

Sufficiency, minimal sufficiency, factorization theorem, completeness, completeness of exponential families, ancillary statistic, Basu’s theorem and its applications, unbiased estimation, uniformly minimum variance unbiased estimation, Rao-Blackwell theorem, Lehmann-Scheffe theorem, Cramer-Rao inequality, consistent estimators, method of moments estimators, method of maximum likelihood estimators and their properties; Interval estimation: pivotal quantities and confidence intervals based on them, coverage probability.

Testing of Hypotheses

Neyman-Pearson lemma, most powerful tests, monotone likelihood ratio (MLR) property, uniformly most powerful tests, uniformly most powerful tests for families having MLR property, uniformly most powerful unbiased tests, uniformly most powerful unbiased tests for exponential families, likelihood ratio tests, large sample tests.

Non-parametric Statistics

Empirical distribution function and its properties, goodness of fit tests, chi-square test, Kolmogorov-Smirnov test, sign test, Wilcoxon signed rank test, Mann-Whitney U-test, rank correlation coefficients of Spearman and Kendall.

Multivariate Analysis

Multivariate normal distribution: properties, conditional and marginal distributions, maximum likelihood estimation of mean vector and dispersion matrix, Hotelling’s T2 test, Wishart distribution and its basic properties, multiple and partial correlation coefficients and their basic properties.

Regression Analysis

Simple and multiple linear regression, R2 and adjusted R2 and their applications, distributions of quadratic forms of random vectors: Fisher-Cochran theorem, Gauss-Markov theorem, tests for regression coefficients, confidence intervals.

If you are preparing for GATE, download iStudy Mobile App for all GATE Syllabus, Previous Question Papers and Keys, preparation guide, Exam updates, Gate Virtual calculator, Gate Score calculator, and IITs & NITs cutoffs. It is a lightweight, easy to use, no images, and no ads platform to make students’ lives easier.
Get it on Google Play.

GENERAL APTITUDE (Common for all branches)

Verbal Aptitude

Basic English Grammar
Tenses, articles, adjectives, prepositions, conjunctions, verb-noun agreement, and other parts of speech

Basic Vocabulary
Words, idioms, and phrases in context

Reading and Comprehension

Narrative Sequencing

Quantitative Aptitude

Data Interpretation
Data graphs (bar graphs, pie charts, and other graphs representing data), 2- and 3-dimensional plots, maps, and tables

Numerical Computation and Estimation
Ratios, percentages, powers, exponents and logarithms, permutations and combinations, and series

Mensuration and Geometry

Elementary Statistics and Probability

Analytical Aptitude

Logic
Deduction and Induction

Analogy

Numerical Relations and Reasoning

Spatial Aptitude

Transformation of Shapes
Translation, rotation, scaling, mirroring, assembling, and grouping

Paper folding, cutting, and patterns in 2 and 3 dimensions

InI India has tons of information for M.Tech Admissions in IITs, NITs, IIITs, and other state-level institutes. Do benefit from the content and also share it with your friends. If you want to discuss things with friends do check our communities, All Q&A about GATE Preparation and M.Tech Admissions.

We wish you great luck with GATE preparations.

Leave a Reply

Your email address will not be published. Required fields are marked *

*