@Dinesh: Ok I wants to say that I am not too good in this Forming section but still I will try to solve this; Lets see how much can I help you !!! Say, Original c/s Area = O.A. Final c/s Area = F.A. Area After First Die = A1 Original Length = O.L. Final Length = F.L. Now O.A. = (pi/4)*(10^2) = 78.5398 mm2 A1 = (1-0.35)*(O.A.) = 0.65*(O.A.) = 51.0508 mm2 Similarly for the area after 7th die = 0.65*0.65*0.65*0.65*0.65*0.65*0.65*(O.A.) … .. (For 7 dies) = (0.65)^7 * (O.A.) = 3.8502 mm2 = F.A. Now, as True strain is instantaneous % of change in length of specimen & it is given by, True strain (TS) = Natural log of (O.A./F.A.) = ln (78.5398/3.8502) = 3.0155 ———————————–ANS Final length can be calculated by using constant volume principle as, Initial Volume = Final Volume (O.A.)*(O.L.) = (F.A.)*(F.L.) 78.5398 * 100 = 3.8502 * F.L. F.L. = 2039.8888 = 2040 mm ————————————-ANS Now, For force we have to calculate a Draw Stress after first die, using uniform energy deformation method, Draw Stress (D.S.) = Y * ln(O.A./A1) …… … (Y = Yield Strength) (Note this formula can be used for only Ideal Conditions i.e. neglecting friction and redundant work) Hence, D.S. = 200 * ln (78.5398/51.0508) = 86.1568 N/mm2 Now, Drawing Force through first die is, Drawing Force (F) = (D.S.)*(A1) = 86.1568 * 51.0508 = 4398.3735 N = 4.4 kN ———————————ANS

Note: Please check the answers & do notify in reply. If possible then mention the answers (options) along with the questions.

@Dinesh: Ok I wants to say that I am not too good in this Forming section but still I will try to solve this; Lets see how much can I help you !!!

Say, Original c/s Area = O.A.

Final c/s Area = F.A.

Area After First Die = A1

Original Length = O.L.

Final Length = F.L.

Now O.A. = (pi/4)*(10^2) = 78.5398 mm2

A1 = (1-0.35)*(O.A.) = 0.65*(O.A.) = 51.0508 mm2

Similarly for the area after 7th die

= 0.65*0.65*0.65*0.65*0.65*0.65*0.65*(O.A.) … .. (For 7 dies)

= (0.65)^7 * (O.A.)

= 3.8502 mm2 = F.A.

Now, as True strain is instantaneous % of change in length of specimen & it is given by,

True strain (TS) = Natural log of (O.A./F.A.)

= ln (78.5398/3.8502)

= 3.0155 ———————————–ANS

Final length can be calculated by using constant volume principle as,

Initial Volume = Final Volume

(O.A.)*(O.L.) = (F.A.)*(F.L.)

78.5398 * 100 = 3.8502 * F.L.

F.L. = 2039.8888

= 2040 mm ————————————-ANS

Now, For force we have to calculate a Draw Stress after first die,

using uniform energy deformation method,

Draw Stress (D.S.) = Y * ln(O.A./A1) …… … (Y = Yield Strength)

(Note this formula can be used for only Ideal Conditions i.e. neglecting friction and redundant work)

Hence, D.S. = 200 * ln (78.5398/51.0508)

= 86.1568 N/mm2

Now, Drawing Force through first die is,

Drawing Force (F) = (D.S.)*(A1)

= 86.1568 * 51.0508

= 4398.3735 N

= 4.4 kN ———————————ANS

Note: Please check the answers & do notify in reply. If possible then mention the answers (options) along with the questions.