7th Sem, Mechatronics

18MT72: Thermal Engineering Mechatronics Syllabus for BE 7th Sem 2018 Scheme VTU

Thermal Engineering detailed Syllabus for Mechatronics Engineering (Mechatronics), 2018 scheme has been taken from the VTUs official website and presented for the VTU students. For Course Code, Subject Names, Teaching Department, Paper Setting Board, Theory Lectures, Tutorial, Practical/Drawing, Duration in Hours, CIE Marks, Total Marks, Credits and other information do visit full semester subjects post given below. The Syllabus PDF files can also be downloaded from the official website of the university.

For all other VTU Mechatronics 7th Sem Syllabus for BE 2018 Scheme, do visit VTU Mechatronics 7th Sem Syllabus for BE 2018 Scheme Subjects. The detailed Syllabus for thermal engineering is as follows.

Course objectives:

For the complete Syllabus, results, class timetable, and many other features kindly download the iStudy App
It is a lightweight, easy to use, no images, and no pdfs platform to make students’s lives easier.
Get it on Google Play.

Module – 1

Thermodynamics – Fundamental Concepts & Definitions: Thermodynamics: definition and scope, Microscopic and Macroscopic approaches. Engineering thermodynamics: definition, some practical applications of engineering thermodynamic. System (Closed system) and Control Volume (open system): Characteristics of system boundary and control surface, examples. Thermodynamic properties; definition and units, intensive and extensive properties. Thermodynamic state, state point, state diagram, path and process, quasi-static process, cyclic and non-cyclic presses; Thermodynamic equilibrium; definition, mechanical equilibrium; diathermic wall, thermal equilibrium, chemical equilibrium. Statement of Zeroth law of thermodynamics. (No Numericals). Work and Heat: Thermodynamic definition of work; examples, sign convention. Displacement work: at part of a system boundary, at whole of a system boundary, expressions for displacement work in various processes through p-v diagrams. Shaft work, Electrical work. Other types of work, Heat; definition, units and sign convention, simple problems.

Module – 2

First Law of Thermodynamics: Statement of the First law of thermodynamics, extension of the First law to non-cyclic process, energy as a property, modes of energy, pure substance; definition, two-property rule, Specific heat at constant volume, enthalpy, specific heat constant pressure. Extension of the First law to control volume; steady state-steady flow energy equation, important applications, simple problems. Second Law of Thermodynamics: Thermal Reservoir, Concepts of Heat Engine, Heat Pump, coefficients of performance. Keivin – Planck statement of the Second law of Thermodynamics; PMM II and PMM I, Claussius statement of second law of Thermodynamics, equivalence of the two statements; reversible hat engines, Carnot cycle, Carnot principles. Thermodynamic temperature scale, simple problems. L1, L2, L3, L4

Module – 3

For the complete Syllabus, results, class timetable, and many other features kindly download the iStudy App
It is a lightweight, easy to use, no images, and no pdfs platform to make students’s lives easier.
Get it on Google Play.

Module – 4

Conduction: Derivation of general three dimensional conduction equations in Cartesian coordinate, special cases, discussion on 3-D conduction in cylindrical and spherical coordinate systems (No derivation). One dimensional conduction equations in rectangular, cylindrical and spherical coordinates for plane and composite walls. Overall heat transfer coefficient. Thermal contact resistance, Simple problems. Free or Natural Convection: Application of dimensional analysis for free convection- physical significance or Grashoff number; use of correlations of free convection in vertical, horizontal and inclined flat plates, vertical and horizontal cylinders and spheres, Simpleproblems. L1, L2, L3, L4

Module – 5

Forced Convections: Applications of dimensional analysis for forced convection. Physical significance of Reynolds, Prandtl, Nusselt and Stanton numbers, Simple problems. Radiation Heat Transfer: Thermal radiation; definitions of various terms used in radiation heat transfer, Stefan-Boltzman law, Kircoff’s law. Planck’s law and Wein’s displacement law. Radiation heat exchange between two parallel infinite black surface, between two parallel infinite gray surfaces; effect of radiation shield; intensity of radiation and solid angle, Simple problems. L1, L2, L3, L4

Course Outcomes:

For the complete Syllabus, results, class timetable, and many other features kindly download the iStudy App
It is a lightweight, easy to use, no images, and no pdfs platform to make students’s lives easier.
Get it on Google Play.

Question Paper Pattern:

  • Examination will be conducted for 100 marks with question paper containing 10 full questions, each of 20marks.
  • Each full question can have a maximum of 4 sub questions.
  • There will be 2 full questions from each module covering all the topics of the module.
  • Students will have to answer 5 full questions, selecting one full question from each module.
  • The total marks will be proportionally reduced to 60 marks as SEE marks is 60

Text Books:

  1. Basic and applied Thermodynamics, P. K. Nag, Tata McGraw Hill Pub. 2002.
  2. Heat & Mass transfer, Tirumaleshwar, Pearson education 2006.

Reference Books:

For the complete Syllabus, results, class timetable, and many other features kindly download the iStudy App
It is a lightweight, easy to use, no images, and no pdfs platform to make students’s lives easier.
Get it on Google Play.

For detail Syllabus of all other subjects of BE 7th Sem Mechatronics Engineering, visit (Mechatronics) 7th Sem Syllabus Subjects.

For all (CBSE & Non-CBSC) BE results, visit VTU BE all semester results direct links.

Leave a Reply

Your email address will not be published. Required fields are marked *

*