6th Sem, ME

18ME61: Finite Element Methods ME Syllabus for BE 6th Sem 2018 Scheme VTU

Finite Element Methods detailed Syllabus for Mechanical Engineering (ME), 2018 scheme has been taken from the VTUs official website and presented for the VTU students. For Course Code, Teaching Department, Paper Setting Board, Theory Lectures, Tutorial, Practical/Drawing, Duration in Hours, CIE Marks, Total Marks, Credits and other information do visit full semester subjects post given below. The Syllabus PDF files can also be downloaded from the official website of the university.

For all other VTU 6th Sem ME Syllabus for BE 2018 Scheme, do visit VTU 6th Sem ME Syllabus for BE 2018 Scheme Subjects. The detailed Syllabus for finite element methods is as follows.

Course Learning Objectives:

For the complete Syllabus, results, class timetable, and many other features kindly download the iStudy App
It is a lightweight, easy to use, no images, and no pdfs platform to make students’s lives easier.
Get it on Google Play.

Module-1

Introduction to Finite Element Method: General steps of the finite element method. Engineering applications of finite element method. Advantages of the Finite Element Method. Boundary conditions: Homogeneous and non-homogeneous for structural, heat transfer and fluid flow problems. Potential energy method, Rayleigh Ritz method, Galerkin’s method, Displacement method of finite element formulation. Convergence criteria, Discretisation process, Types of elements: 1D, 2D and 3D, Node numbering, Location of nodes. Strain- displacement relations, Stress-strain relations, Plain stress and Plain strain conditions, temperature effects. Interpolation models: Simplex, complex and multiplex elements, linear interpolation polynomials in terms of global coordinates 1D, 2D, 3D Simplex Elements.

Module-2

Introduction to the stiffness (Displacement) method: Introduction, Derivation of stiffness matrix, Derivation of stiffness matrix for a spring element, Assembly the total stiffness matrix by superposition. One-Dimensional Elements-Analysis of Bars and Trusses, Linear interpolation polynomials in terms of local coordinate’s for1D, 2Delements. Higher order interpolation functions for 1D quadratic and cubic elements in natural coordinates, , , Constant strain triangle, Four-Nodded Tetrahedral Element (TET 4), Eight-Nodded Hexahedral Element (HEXA 3 8), 2D iso-parametric element, Lagrange interpolation functions. Numerical integration: Gaussian quadrature one point, two point formulae, 2D integrals. Force terms: Body force, traction force and point loads, Numerical Problems: Solution for displacement, stress and strain in 1D straight bars, stepped bars and tapered bars using elimination approach and penalty approach, Analysis of

Module-3

For the complete Syllabus, results, class timetable, and many other features kindly download the iStudy App
It is a lightweight, easy to use, no images, and no pdfs platform to make students’s lives easier.
Get it on Google Play.

Module-4

Heat Transfer: Basic equations of heat transfer: Energy balance equation, Rate equation: conduction, convection, radiation, 1D finite element formulation using vibration method, Problems with temperature gradient and heat fluxes, heat transfer in composite sections, straight fins. Fluid Flow: Flow through a porous medium, Flow through pipes of uniform and stepped sections, Flow through hydraulic net works.

Module-5

Axi-symmetric Solid Elements: Derivation of stiffness matrix of axisymmetric bodies with triangular elements, Numerical solution of axisymmetric triangular elements subjected to surface forces, point loads, angular velocity, pressure vessels. Dynamic Considerations: Formulation for point mass and distributed masses, Consistent element mass matrix of one dimensional bar element, truss element, axisymmetric triangular element, quadrilateral element, beam element. Lumped mass matrix of bar element, truss element, Evaluation of eigen values and eigen vectors, Applications to bars, stepped bars, and beams.

Course Outcomes:

For the complete Syllabus, results, class timetable, and many other features kindly download the iStudy App
It is a lightweight, easy to use, no images, and no pdfs platform to make students’s lives easier.
Get it on Google Play.

Question Paper Pattern:

  • The question paper will have ten full questions carrying equal marks.
  • Each full question will be for 20 marks.
  • There will be two full questions (with a maximum of four sub- questions) from each module.
  • Each full question will have sub- question covering all the topics under a module.
  • The students will have to answer five full questions, selecting one full question from each module.

Text Books:

  1. A first course in the Finite Element Method Logan, D. L Cengage Learning 6th Edition 2016
  2. Finite Element Method in Engineering Rao, S. S Pergaman Int. Library of Science 5th Edition 2010
  3. Finite Elements in Engineering Chandrupatla T. R PHI 2nd Edition 2013

Reference Books:

For the complete Syllabus, results, class timetable, and many other features kindly download the iStudy App
It is a lightweight, easy to use, no images, and no pdfs platform to make students’s lives easier.
Get it on Google Play.

For detail Syllabus of all other subjects of BE Mechanical Engineering, 2018 scheme do visit Mechanical Engineering 6th Sem Syllabus for 2018 scheme.

For all (CBSE & Non-CBSC) BE results, visit VTU BE all semester results direct links.

Leave a Reply

Your email address will not be published. Required fields are marked *

*